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Basis Representation

Taking the signal apart.
Writing it as a discrete linear combinations of “atoms”.

z(t) = ) alv)i(t)

~verl

for some fixed set of basis signals {1, (t)},er. Here I' is a
discrete index set (for example Z, N, Z x Z, N X Z etc.)
which will be different depending on the application.



Translate (linearly) the signal into into a discrete list of num-
bers in such a way that it can be reconstructed (i.e. the
translation is lossless). Linear transform = series of inner
products, so this mapping looks like:

( (@(®), wi(t))
(a(t). (1)

(@(t), (0)

x(t) — <

\ /

for some fixed set of signals {1 (¢)}er.



Basis Representation

Fourier series

Let z(t) € Ly([0,1]). Then we can build up z(¢) using harmonic
complex sinusoids:

z(t) = a(k)eP™

where



Basis Representation

Fourier series: properties

1. The {a(k)} carry semantic information about which fre-
quencies are in the signal.

2. If () is smooth, the magnitudes |a(k)| fall off quickly as k

increases. This energy compaction provides a kind of implicit
cOmpression.



Basis Representation

Sinc interpolation

sin(w(t — nT))
) = nzle’["] 7t — nT)/T




Basis Representation

Sinc interpolation

o sin(w(t —nT)) —— 2.
o) = 3 o]

wn(t) _ \/? sin(7(t — NT))

w(t —nT)
a(n) = ﬁic(nT)



Basis Representation

Ortho-basis expansion

If {1} er is an orthobasis for H, then every z(t) € H can be

written as
z(t) = Z<$(t)’ U, (1)) ¥,(2).

yel

/
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Basis Representation

Ortho-basis expansion

Analysisstep  U'[e(t)] = {(2(t), vy (O }yer = {a(¥) }rer-

Synthesis step  V[{a(7)} er] = Za



Basis Representation

Parseval’'s Theorem

Theorem. Let {t,},cr be an orthobasis for a space H. Then
for any two signals z, € H

(z,y)g =Y _ a()BO)

where

a(y) = (z,%)r and B(v) = (y,¥))n



Basis Representation

Parseval’'s Theorem

e every space of signals for which we can find any ortho-basis can be discretized
e mapping from (continuous) signal space into (discrete) coefficient space preserves
inner products
o it preserves all of the geometrical relationships between the signals (i.e.
distances and angles).

® in some sense, this means that all signal processing can be done by manipulating
discrete sequences of numbers.



Basis Representation
Cosine Transform (CT)

The cosine-I basis functions for ¢t € [0, 1] are

Pi(t) = : .
PR = Y VB cos(mkt) k>0

'l»"')o(t) : '¢’1(t)

R




Basis Representation

Discrete Cosine Transform (CT)

Definition: The DCT basis functions for RY are

k=0

Proy

’,(:()5(?(71.4—5)) k=100 — 1

4

n=10,1, ..., N—I1,



Basis Representation

PCA

Formally, let ¥;(t), ..., ¥ x(t) be a finite set of orthogonal vectors
in H, and set

Y = span{y1,...,¥n}.

Given a fixed signal xy(t) € H, the solution Zy(t) to
min [|zo(t) — 2(t)[l3 (1)

is given by

Fot) = D _(wo(t), vi(t))u(t).

e—1



Basis Representation

Non-orthogonal basis

&) (‘L~ ’(r'lf)())
o | _ (x, 1)
QaN-1 (z,%Nn_1)

Stacking up the (transposed) v, as rows in an N x N matrix U*

l’*
— Y
M . J—
% 1
W= - : - ’
™
Yn_1

we have the straightforward relationships

a="U'z, and z=U""a.



Basis Representation

Non-orthogonal basis

Yy (‘II;a lbo)
(3] — (-L-\ U')I)
aN-1 (110 ; ?,/JN—l)

Stacking up the (transposed) v, as rows in an N x N matrix U*

[y¥
—_— * —_—
\I’* — 17/)1
aly¥
Yn_1
we have the straightforward relationships

a=U'%2 and z=""la

N-1

a2l = Z (z, V) Ux[n).

k=0

ot = Yo Y1 - Yna
RN

orllzll; < llall; < oxllzll,




Basis Representation

Over-complete frames: Fat matrix

xp
q

| QYAf—1

by = (TU)~!

\Il*

z[n| =

M-1

= (D),

Z <£L', d&)i’k [n] ‘

k=0



Basis Representation

@ Signal/image f(t) in the time/spatial domain

@ Decompose f as a superposition of atoms
F&) =) aiti(t)
i

1; = basis functions

a; = expansion coefficients in y>-domain

@ Classical example: Fourier series

;i = complex sinusoids /
«; = Fourier coefficients /
@ Modern example: wavelets

P; = "little waves”
a; = wavelet coefficients = /\ N




Basis Representation

Two sequences of functions: {1;(t)}, {¥(t)}
Analysis (inner products):

az\I;*[f], ai:<i[}i:f>

Synthesis (superposition):
F=val, f=Y awilt
e If {¢;(t)} is an orthobasis, then

2 2
ledlz, = Iflz,  (Parseval)

> aifi = / f(t)g(t) dt  (where 8 = [g])
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Two sequences of functions: {1;(t)}, {1 (t)}
Analysis (inner products):

a = U*[f], a; = (Ui, f)

Synthesis (superposition):

f="Yla], f= Zaz‘wz‘(t)



Two sequences of functions: {1;(t)}, {1(t)}
Analysis (inner products):

a = U*[f], a; = (i, f)

Synthesis (superposition):

f = ¥la], f= Zaz‘d}i(t)



signal/data SYthGSiS Coefficients/
dictionary Representation

X= Ya
» Classical: signal/i-mage is “bandlimited” or “low-pass”

» Modern: smooth between isolated singularities (e.g. 1D piecewise poly)
» Postmodern: 2D image is smooth between smooth edge contours



signal/data Syn’Fhesis Coefficients/
dictionary Representation

X= Ya
» Classical: signal/ivmage is “bandlimited” or “low-pass”

» Modern: smooth between isolated singularities (e.g. 1D piecewise poly)
» Postmodern: 2D image is smooth between smooth edge contours

e Ortho-basis (NxN)
e Basis (NxN)
e Overcomplete (NxM, M>>N)

Given x, choice of \Psi determines the behavior of \alpha.



Notion of Dictionary
\

S

K

= X = - O ‘I‘ - + - [

An overcomplete dictionary (more columns than rows) can help in obtaining a representation \alpha which is
sparse.



signal/data SYthGSiS Coefficients/
dictionary Representation

| l |
x= Ya
An pursued goal is Construct “good representation”

» sparsifies signals/images of interest
» can be computed using fast algorithms

(O(N) or O(N log N) — think of the FFT)



Linear approximation

@ Linear S-term approximation: keep S coefficients in fixed locations

S
fs(t) = ) omPm(?)
m=1
» projection onto fixed subspace
» lowpass filtering, principle components, etc.

@ Fast coefficient decay = good approximation
lam| Sm™T = |If - fslz S ST

e Take f(t) periodic, d-times continuously differentiable,
W= Fourier series:

If = fsliz < 87

The smoother the function, the better the approximation
Something similar is true for wavelets ...



Image approximation using DCT

Take 1% of “low pass” coefficients, set the rest to zero

original approximated

rel. error = 0.075

Adapted from: Lecture Notes on Sparsity and Compressive Sensing,
Justin Romberg, Georgia Tech Uni.



Non-linear Approximation

f = UBI subject to #{v: B}] #0} < S.

min
3€Rn

1. Compute a@ = U*f.
2. Find the locations of the S-largest terms in «; call this set
I

3. Set
b= {0t 1<

4. Compute fg = ¥f3s.



Image approximation using DCT

Take 1% of “low pass” coefficients, set the rest to zero

original approximated

rel. error = 0.075



Image approximation using DCT

Take 1% of largest coefficients, set the rest to zero (adaptive)

original approximated

rel. error = 0.057



Image approximation using DCT

Take 1% of largest coefficients, set the rest to zero (adaptive)

original approximated

rel. error = 0.057



Image approximation using DCT Image approximation using DCT

Take 1% of “low pass” coefficients, set the rest to zero Take 1% of largest coefficients, set the rest to zero (adaptive)

original approximated original approximated

rel. error = 0.075 rel. error = 0.057



DCT /wavelets comparison

Take 1% of largest coefficients, set the rest to zero (adaptive)

DCT wavelets

|

rel. error = 0.057 rel. error = 0.031



Nonlinear approximation

@ Nonlinear S-term approximation: keep S largest coefficients

fs(t) = Z a1 (t), ['s = locations of S largest |av,|
v€l's

@ Fast decay of sorted coefficients = good approximation

lalmy S m™" = |If—fslz S ST

~J

|| (m) = mth largest coefficient



Linear v. nonlinear approximation

e For f(t) uniformly smooth with d “derivatives”

S-term approx. error

Fourier, linear gtk
Fourier, nonlinear SRt
wavelets, linear e e
wavelets, nonlinear geatl

e For f(t) piecewise smooth

S-term approx. error

Fourier, linear g
Fourier, nonlinear g

wavelets, linear e
wavelets, nonlinear L e

Nonlinear wavelet approximations adapt to singularities



Sparse representation - a “good representation”

Sparse representations yield algorithms for (among other things)
© compression,
@ estimation in the presence of noise (“denoising”),
@ inverse problems (e.g. tomography),

@ acquisition (compressed sensing)

that are
@ fast, signal/data SYthGSiS Coefficients/
e relatively simple, dictionary  pepresentation

@ and produce (nearly) optimal results

l l l
X = \V(x




A simple underdetermined inverse problem

Observe a subset €2 of the 2D discrete Fourier plane

phantom (hidden) white star = sample locations

N :=512% = 262, 144 pixel image
observations on 22 radial lines, 10, 486 samples, ~ 4% coverage



Minimum energy reconstruction

Reconstruct g* with

A

T flwi,we) (w1,ws) € Q
Sha b 0 (w1, wo) € Q

Set unknown Fourier coeffs to zero, and inverse transform

original Fourier samples g



Total-variation reconstruction

Find an image that

@ Fourier domain: matches observations

@ Spatial domain: has a minimal amount of oscillation
Reconstruct g* by solving:

lnginZ|(Vg)i,j| s.t. glwr,we) = fw 1,w2), (w1, ws2) € Q2
i,j

original Fourier samples g* = original
perfect reconstruction



Total-variation reconstruction

Find an image that II.|[, I,-norm induces sparsity

@ Fourier domain: matches observation
@ Spatial domain: has a minimal amount of oscillation
Reconstruct g* by solving:

’, AN

[
min: Vg)i;.q
p: Z 1(V9)i 4]

V2]

Ve ==

original Fourier samples g* = original
perfect reconstruction



Sampling a superposition of sinusoids

We take M samples of a superposition of S sinusoids:

Time domain xo(t)

Frequency domain g (w)

LT

||

Measure M samples
(red circles = samples)

S nonzero components



Sampling a superposition of sinusoids

Reconstruct by solving

________

| |

original zg, S =15

perfect recovery from 30 samples



Graphical intuition for ¢,

min, ||z||s s.t. Px=y min, ||z|; st. Px =1y

R N Sparse as one
4 None of the RN element will
element will be 0
. be 0
A
4
< -
4 L
v

{o/ : y=Dz'} {z': y=>z'}



Numerical recovery curves

@ Resolutions N = 256, 512,1024 (black, blue, red)
@ Signal composed of S randomly selected sinusoids

@ Sample at M randomly selected locations

100 - :
sof
so}
70F

% success  sof

0 0.2 0.4 0.6 0.8 1

S/M

@ In practice, perfect recovery occurs when M =~ 2S5 for N ~ 1000



A nonlinear sampling theorem

Exact Recovery Theorem (Candes, R, Tao, 2004):
@ Unknown Z is supported on set of size S

@ Select M sample locations {t,,} “at random” with
M > Const- Slog N

@ Take time-domain samples (measurements) vy, = zo(tm)

@ Solve
min ||Z||¢, subjectto z(tm) =ym, m=1,...,. M
T

@ Solution is exactly f with extremely high probability

@ In total-variation/phantom example, S=number of jumps



Spa rse representations are representations that account for most

or all information of a signal with a linear combination of a small number
of atoms.

Sparse vector - few elements are

non-zero \/\/\

\V 0

X=
| x

N |




Spa rse representations are representations that account for most

or all information of a signal with a linear combination of a small number
of atoms.

Sparse vector - few elements are

non-zero \/\/\

Given x and \Psi with more columns
than rows, solving for a sparse \alpha

is non-trivial and a challenging B
problem. | -

Greedy algorithms Matching pursuit (MP) and the closely re-
lated Orthogonal Matching Pursuit (OMP) operate by it-
erative choosing columns of the matrix. At each iteration,
the column that reduces the approximation error the most
is chosen.

Convex programming Relaxes the combinatorial problem into
a closely related convex program, and minimizes a global cost
function. The particular program, based on ¢; minimization,
we will look at has been given the name Basis Pursuit in the
literature.




Course summary

Signals

@)

Types of signal - time, space, applications

Signal Models

@)
@)

Polynomials
Sines and cosines

Representations

@)

O
O
O
O

DFT

O

O

Fourier series

Fourier transform

Convolution

Filtering

Linear Systems: Impulse response and
head related transfer function

Computation
Neural network

Time-frequency representation
o spectrum varies with time
o Instantaneous frequency
o STFT and spectrogram

Clustering
o k-means
o Distance measure: DP and DWT

Dimensionality Reduction
o Linear spaces
o PCA
o LDA

Sparse representations
o Introduction
o Basis and representations
o L2, L1 and LO norm

and other things we discussed in class
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